Measurements and Instrumentations
 Lecture 1: Measurement Errors and Characteristics

Dr. Haitham El-Hussieny

Electronics and Communications Engineering
Faculty of Engineering (Shoubra)
Benha University

October 2018

Lecture Outline:

(1) Types of Measurement Errors.
(2) Measurements Characteristics.

Table of Contents

(1) Types of Measurement Errors.
(2) Measurements Characteristics

Measurement Errors:

- No electronic component or instrument is perfectly accurate; all have some error or inaccuracy.
- These errors are introduces due to either defect in the instrument, wrong observance, or environmental factors.
- These errors could combine to either:
- Completely cancel each others.
- Create greater errors in measurement (Worst case)
- The worst case should always considered while performing measurement, where these errors could combine to create larger error.

Measurement Errors:

Measurement errors can be categorized into three types:

Gross Error (Human Error)

 Errors due to human mistakes in using instruments, recording observations, and calculating measurement results.
Example

- Misunderstanding the unit in case of digital devices (21 V instead of 21 mV).
- A wrong scale may be chosen in analog instruments.
- Transpose of the readings while recording. (24.9 mV instead of 29.4 mV).

Measurement Errors:

Measurement errors can be categorized into three types:

Systematic Error

Errors due to problems with instruments.

- Instrument Errors: May be due to incorrect device calibration.
- Environmental Errors: Change in environmental conditions may change some of device parameters.
- Observational Errors: Errors introduced by the observer as the parallax error.

Measurement Errors:

Measurement errors can be categorized into three types:

Systematic Error
 Errors due to problems with instruments.

Parallax Error: Viewing measurement from different angles.

Measurement Errors:

Measurement errors can be categorized into three types:

Random Error
 Errors due to unknown factors.

- These errors are relatively small.
- These errors can be reduced by increasing the number of readings and using arithmetic mean.

Measurement Errors:

Absolute and Relative Errors:

The error in measuring instruments can be represented in two ways: Absolute and Relative

Absolute Error (Δe)

It is defined as the difference between the true A_{t} and the measured A_{m} values.

$$
\Delta e=A_{m}-A_{t}
$$

Example

An ammeter reads 6.7 A and the true value of the current is 6.54 A . The absolute error is

$$
\Delta e=A_{m}-A_{t}=6.7-6.54=0.16 A
$$

Measurement Errors:

Absolute and Relative Errors:

Relative Error (e_{r})

It is defined as the ratio of the absolute error Δe to the true value A_{t} of the quantity being measured.

$$
e_{r}=\frac{\Delta e}{A_{t}}
$$

Percentage error

$$
\% e_{r}=e_{r} \times 100=\frac{\Delta e}{A_{t}} \times 100
$$

Example

The current through a resistor is 2.5 A , but the measurement yields a value of 2.45 A .

The absolute error is

$$
\Delta e=A_{m}-A_{t}=2.45-2.5=-0.05 A
$$

The relative error

$$
e_{r}=\frac{\Delta e}{A_{t}}=\frac{-0.05}{2.5}=-0.02
$$

The percentage relative error

$$
\% e_{r}=e_{r} \times 100=-2 \%
$$

Measurement Errors

Combination of Errors

Errors in Sum of quantities

$$
\begin{aligned}
E & =V_{1}+V_{2} \\
& =\left(V_{1} \pm \Delta V_{1}\right)+\left(V_{2} \pm \Delta V_{2}\right) \\
& =\left(V_{1}+V_{2}\right) \pm\left(\Delta V_{1}+\Delta V_{2}\right)
\end{aligned}
$$

Error in Sum

Error in the sum of quantities equals the sum of absolute errors.

Measurement Errors

Combination of Errors

Errors in Difference of quantities

$$
\begin{aligned}
E & =V_{1}-V_{2} \\
& =\left(V_{1} \pm \Delta V_{1}\right)-\left(V_{2} \pm \Delta V_{2}\right) \\
& =\left(V_{1}-V_{2}\right) \pm\left(\Delta V_{1}+\Delta V_{2}\right)
\end{aligned}
$$

Error in Difference

Error in the difference of quantities equals the sum of absolute errors.

Measurement Errors

Combination of Errors

Errors in Product of quantities

$$
\begin{aligned}
P & =E I=(E \pm \Delta E) \times(I \pm \Delta I) \\
& =E . I \pm E . \Delta I \pm I . \Delta E \pm \Delta E . \Delta I \\
& \approx E . I \pm E . \Delta I \pm I . \Delta E \quad(\Delta E . \Delta I \text { is very small })
\end{aligned}
$$

Percentage error in P is

$$
\begin{aligned}
\% P & =\frac{E . \Delta I+I \cdot \Delta E}{E . I} \times 100 \% \\
& =\left(\frac{\Delta I}{I}+\frac{\Delta E}{E}\right) \times 100 \% \\
& =(\% \text { error in } I)+(\% \text { error in } E)
\end{aligned}
$$

Percentage error in the product of quantities equals the sum of percentage errors

Measurement Errors

Combination of Errors

Errors in Quotient of quantities

$$
R=\frac{E \pm \Delta E}{I \pm \Delta I}
$$

Percentage error in R is
\%error in $R=(\%$ error in $I)+(\%$ error in $E)$
Percentage error in the quotient of quantities equals the sum of percentage errors

Quantity raised to a power:
 \%error in $A^{B}=B(\%$ error in $A)$

Table of Contents

(1) Types of Measurement Errors.
(2) Measurements Characteristics.

Measurements Characteristics:

Accuracy and Precision:

Accuracy

Accuracy is defined as the degree of closeness of a measured value compared to the true value of the quantity to be measured.

Precision

Precision is defined as the degree of similarity of repeated measurements.

Measurements Characteristics:

Resolution and Significant Figure:

Resolution

Resolution is defined as s the smallest change in the measured quantity to which an instrument will respond.

Significant Figure

End of Lecture

Best Wishes

haitham.elhussieny@feng.bu.edu.eg

